Code No.: 16245 (A) N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (C.S.E.) VI-Semester Main Examinations, May/June-2023 Image Processing (PE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Part-A ($10 \times 2 = 20 \text{ Marks}$) Stem of the question	T	1 1864		
1.	What are the different processing for which input	M	L	CO	P
	S dies.	2	1	1	1
2.	What is the number of colors we get if we use 4-bits for each of Red, Green and Blue channels	2	2	1	1,
3.	What are the different point detection operators	2	1	2	
4.	Give the Prewitt operators.	2	1	2	1
5.	What is the appropriate representation of the given signal in frequency	2	2	2	1,
6.	a. Time-domain decomposition of a composite signal	7			
	Which transformation of an image is used in JPEG compression	2	1	3	1
	What are the different binary image compression standards	2	1	4	1
	What are the other two JPEG format and what is the difference among all the three JPEG formats	2	1	4	1
9.	Write the colors for A.B, C and D Red A Green B C Blue	2	2	5	1,2
O. Ci		2	1	5	1
	Green				

	$Part-B (5 \times 8 = 40 Marks)$				
1. a)	What are the components required for Image Processing and explain with neat block diagram?	4	2	1	1,2
	Explain how Electromagnetic spectrum bands are used in Image	4	2	1	1,2
2 0)	An image with the occurrence of gray values (0-7) are shown in column-2. Apply the histogram equalization and give the resultant image gray values. After applying one time, once again apply the histogram equalization for the second pass and then third pass. Give	4	3	2	1,2
	the resultant histogram for all the three passes.				
	Gray Value Frequency				
	0 81				
	1 122				
	2 245				
	3 329				
	4 656				
	5 850				
	6 1023				
	7 790				
b)	Obtain the appropriate threshold by using by using Basic global thresholding algorithm.	4	3	2	1,2
	[11 12 13 14 13 12 11 15]				
	10 15 16 17 14 13 12 11				
	16 14 14 13 12 11 14 13				
	13 14 15 12 11 10 15 14				
	15 16 13 12 11 15 17 13				
	14 16 13 12 15 16 13 12				
	15 14 17 13 12 15 13 12				
	[15 13 12 14 12 16 17 11]				
13. a)	Explain in detail about image sharpening in frequency domain using ideal high pass filter.	g 4	2	3	1,
b	Explain in detail about image smoothening in frequency domain using ideal low pass filter.	g 4	2	3	1
14. a	Given a five symbol source {a,b,c,d,e} with source probabilities {0.15 0,2, 0.15, 0.2,0.3}, arithmetically encode the sequence <i>aacabc</i> .	5, 4	3	4	1

Code No.: 16245 (A) N/O

ompression te	chnique and g	ive the result	for the following	4	3	4	1,2
	[39 39 126	126]					
	39 39 126	126					
	39 39 126	126					
	39 39 126	126					
Give the procedure to convert RGB color model to HSI color model? Convert RGB values 24, 98, 118 respectively into HIS values in range [0-1].						5	1,2
ut Inverse filte	ring			4	2	5	1,2
Explain about Image sensing and acquisition with suitable diagram.					2	1	1
about different sharpening filters with suitable example.				4	3	2	1,2
Answer any <i>two</i> of the following:							
Explain about DFT of two variables and compute DFT sequence of $f(x)=\{0, 1, 2, 1\}$						3	1
ut different red ative redundan	undancies in i	mages. Compi	ute compression	4	3	4	1,2
probability	Code1	Code2					
0.25	01010101	01					
0.47	10000000	1					
0.25	10111010	000					
0.03	11111111	001					
0	0.03	0.03	0.03 11111111 001	20222010	0.03 11111111 001	0.03 11111111 001	0.03 11111111 001

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level - 3 & 4	40%
